US009229926B2

a2 United States Patent

Patman Maguire

US 9,229,926 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DETERMINING SIMILARITY OF
UNFIELDED NAMES USING FEATURE
ASSIGNMENTS

(71) Applicant: International Business Machines

Corporation, Armonk, NY (US)

(72)

Inventor: Frankie E. Patman Maguire,

Washington D.C., WA (US)
(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 236 days.

@
(22)

Appl. No.: 13/692,798

Filed: Dec. 3, 2012

Prior Publication Data

US 2014/0156261 Al Jun. 5, 2014

(65)

Int. Cl1.
GO6F 1727
U.S. CL
CPC

(1)

(52)

(2006.01)

GOGF 17/2785 (2013.01); GOGF 17/278
(2013.01)

(58) Field of Classification Search

CPC GOG6F 17/2785; GO6F 17/2735; GOG6F 17/278
USPC 704/1, 8-10
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,963,871 Bl
7,627,550 Bl

11/2005 Hermansen et al.
12/2009 Adams et al.

7,716,198 B2 5/2010 Meyerzon et al.

7,805,430 B2* 9/2010 Reeb ..cccovvvieivevieninn, 707/708

7,991,787 B2* 8/2011 Kleinccocoeee.. ... 707/780
2008/0114583 Al* 5/2008 Al-Onaizan et al. 704/2
2008/0312909 Al* 12/2008 Hermansen et al. 704/9
2009/0248414 Al 10/2009 Shimomori et al.
2009/0319521 Al* 12/2009 Groeneveld et al. 707/6
2011/0161144 Al* 6/2011 Mizuguchi et al. 705/14.4
2012/0016660 Al 1/2012 Gillam et al.
2013/0138427 Al* 5/2013 deZeeuwetal. 704/9
2013/0282361 Al* 10/2013 Hartletal.ccoevrvvrnrenen. 704/9

OTHER PUBLICATIONS

Anonymous, “Searching Name Lists Using Unique Name Ele-
ments”, Retrieved from the Internet at <URL: http://priorartdatabase.
com/IPCOM/000203578, Jan. 28, 2011, Total 3 pp.

Cheriton, D.R. and T.P. Mann, “A Decentralized Naming Facility”,
Retrieved from the Internet at <URL: http://www.ip.com/pubview/
IPCOMO000128292D, Dec. 31, 1985/Sep. 15, 2005, Total 29 pp.
Mell, P. and T. Grance, “Effectively and Securely Using the Cloud
Computing Paradigm”, NIST, Information Technology Laboratory,
Oct. 7, 2009, Total 80 pp.

(Continued)

Primary Examiner — Douglas Godbold
(74) Attorney, Agent, or Firm — Janaki K. Davda; Konrad,
Raynes, Davda & Victor LLP

(57) ABSTRACT

Provided are techniques for comparing names. A first phrase
score is obtained by comparing a name phrase in a first name
to a name phrase in a second name. A second phrase score is
obtained by comparing another name phrase in the first name
to another name phrase in the second name. An overall score
is generated based on the obtained first phrase score and the
obtained second phrase score. The overall score is updated
based on comparing features of the first name with features of
the second name.

10 Claims, 7 Drawing Sheets

< ! 7 200
Recaive a name.

Parse the re

) ceived name
into one or more name phrases.

|— 202

Identify features markin
relationships, and sema

g sequence, hierarchical

received name.

ntic relationships for the |-— 204

O—

the received nama is to b
a first comp:

Select a next comparand name to which

arand name.

6 compared, starting with | 206

If needed, parse the comparand name
into one or more name phrases.

— 208

5

US 9,229,926 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Mell, P. and T. Grance, “The NIST Definition of Cloud Computing
(Draft)”, National Institute of Standards and Technology, Jan. 2011,
Total 7 pp.

Preliminary Remarks, Jul. 11, 2013, for U.S. Appl. No. 13/939,718,
filed Jul. 11, 2013 by F.E. Patman Maguire, Total 2 pp.

U.S. Patent Application with U.S. Appl. No. 13/939,718, filed Jul. 11,
2013, entitled, “Determining Similarity of Unfielded Names Using
Feature Assignments”, invented by Patman Maguire, F.E., Total 38

pp-
Office Action 1,0ct. 9, 2014, for U.S. Appl. No. 13/939,718, filed Jul.
11, 2013 by F.E. Patman Maguire, Total 14 pp.

Response to Office Action 1, Jan. 9, 2015, for U.S. Appl. No.
13/939,718, filed Jul. 11, 2013 by F.E. Patman Maguire, Total 7 pp.
Final Office Action, Feb. 3, 2015, for U.S. Appl. No. 13/939,718, filed
Jul. 11, 2013 by F.E. Patman Maguire, Total 11 pp.

Response to Final Office Action, May 1, 2015, for U.S. Appl. No.
13/939,718, filed Jul. 11, 2013 by F.E. Patman Maguire, Total 7 pp.
Office Action 3, May 26, 2015, for U.S. Appl. No. 13/939,718, filed
Jul. 11, 2013 by F.E. Patman Maguire, Total 17 pp.

Response to Office Action 3, Aug. 18, 2015, for U.S. Appl. No.
13/939,718, filed Jul. 11, 2013 by F.E. Patman Maguire, Total 9 pp.

Notice of Allowance, Sep. 8, 2015, for U.S. Appl. No. 13/939,718,
filed on Jul. 11, 2013 by F.E. Patman Maguire, Total 9 pp.

* cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 7 US 9,229,926 B2

Computing Device 100

Unfielded Feature-
Based Name
Comparison

(UFNC) Engine
110

Data store 150
Data Set 152

Names with
associated
features
160

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 7 US 9,229,926 B2

< . > 200
Receive a name.

\ 4

_ Parsg the received name 207
into one or more name phrases.

A 4

|dentify features marking sequence, hierarchical
relationships, and semantic relationships for the |— 204
received name.

© >

\ 4

Select a next comparand name to which
the received name is to be compared, starting with }— 206
a first comparand name.

\ 4

If needed, parse the comparand name 208
into one or more name phrases.

FIG. 2A

U.S. Patent Jan. 5,2016 Sheet 3 of 7 US 9,229,926 B2

If needed, identify features marking sequence,
hierarchical relationships, and semantic relationships |— 210
for the comparand name.

A 4

Compare each name phrase in the received name to
each name phrase in the comparand name to obtaina |— 212
phrase score for each pair of name phrases.

A 4

Select pairs of name phrases with highest phrase scores. }— 214

A 4

Generate an adjusted score for one or more of the
selected pairs of the name phrases based onthe | _- 215
phrase scores of the one or more selected pairs of
name phrases and based on one or more features.

O
FIG. 2B

U.S. Patent Jan. 5,2016 Sheet 4 of 7 US 9,229,926 B2

(8)

Generate an overall score based on the phrase scores
(which include any adjusted phrase scores) — 218
for the selected pairs of name phrases.

A 4

Update the overall score
based on feature comparisons | _ 99
of the received name and the

comparand name.

Select
another comparand?

Create a list of potential matched comparands that is
ordered and scored by how well the comparands match | _ 994
the received name based on the adjusted, overall score

for each pair of received and comparand names.

FIG. 2C

US 9,229,926 B2

Sheet S of 7

Jan. 5, 2016

U.S. Patent

. (5)321A3(
] E| |eusa)xg
A /
AR
sa)depy ylomiaN Amvmo%__e,:_ —— feydsig
\ A
0z T ,
JAAS '7A%
ple —~81¢
__ T ¢VE VA% H_H:
—0re , EWS BUISS2014
\
91¢
> WYY
/
422 fuowayy 0ge
w/Nm apoN Jajndwon
t \
FARS

0T€

US 9,229,926 B2

Sheet 6 of 7

Jan. 5, 2016

U.S. Patent

7 Il

00
o°
==
2232

-

Vi

0144

US 9,229,926 B2

Sheet 7 of 7

Jan. 5, 2016

U.S. Patent

GOl

3IBMY0S
JETEIN
alemyos uonealddy

aseqeleq yomjaN Sunylomjay aSeia)g gWdl oWl 951y Ssweluiel

0 & B ([&

91eM)J0S pUE aJempie}

SWRISAS suigishs slanag
@ auagapelg @S8Has 8InjIsHLLY

Sjualy suoneaiddy sylomsN aSel0)s sianjag UOHeZIendiIA
[enuIA [enJIA [enuIA [enuIA [enuIA
—— ———y —
: W @ L 196
UETIEREN
Em"_:w___:_z j%%_m_a_\,_ ()0 %____%__n_ JuloIsinolg
Buluueld 3018 198 Suuaayy 89In0S9Y
V1S —99%
SpeojyIopm
3uIssasnlyd fianag Juswageuep
(ON4n) uosuedwo) /" Suissadoid mw_w__mwmmen_ uoneanp3 w___o%&: S%_mwsmz
ollEN paseg uonoesuel| e1eq W00JSSE[) Juawdopnag / Suiddeyy

“anjeaJ papjatun

US 9,229,926 B2

1
DETERMINING SIMILARITY OF
UNFIELDED NAMES USING FEATURE
ASSIGNMENTS

FIELD

Embodiments of the invention relate to determining the
similarity of unfielded names using feature assignments.

BACKGROUND

Data storage systems typically break personal names into
multiple parts (i.e., parse the personal names) and store these
parts in different fields, which may be labeled with terms such
as “given name,” “middle name,” “surname,” etc. Such a
parsed name may be referred to as a fielded name, and parts of
the name may be referred to as terms. Record retrieval sys-
tems then compare members of the same field to each other to
determine which names are a match for a query. For example,
a search for a database record with the name-related fields
“GivenName=Mary”, “Surname=Smith” would compare
“Mary” to terms stored in the field named “GivenName™ and
“Smith” to terms stored in the field named “Surname.”

Fielded names contribute to match failures in searches
based on name because there is not always a strict correspon-
dence between the terms used in a name and the fields into
which the terms are parsed. This is especially true when
names from various linguistic and cultural origins are stored
in a system designed around one name model. For example, a
typical male name in Saudi Arabia is made up of a person’s
given name, his father’s name, his grandfather’s name, and a
family or tribal name. Western data storage systems may store
names in the following fields: “given name,” “middle name,”
and “surname”. In such systems, the given name portion of
the Saudi Arabian name corresponds to the given name field
found in the Western data storage systems. Other parts of the
Saudi Arabian name may be distributed across the available
fields in various ways in different data storage systems. When
a name search is done, the inconsistent fielding may lead to
there being no corresponding name parts within the same
fields as those of the query.

Some search systems allow multiple parses of the names to
be compared, and then searching on each of the possible
parses. For example, “Islam Azam Muhammed Metwali”
might be variously represented as “Metwali, Islam Azam
Muhammed,” “Muhammed Metwali, Islam Azam,” and
“Azam Muhammed Metwali, Islam.” While this strategy may
reduce the chance that relevant names will be missed alto-
gether, it also tends to increase the number of false positives
returned by a search. For example, “Mohammedi, Islam
Baahi” would be allowed by the third parse, even though it is
not a variant form of “Islam Azam Muhammed Metwali.”
This approach also requires multiple comparisons, which
increases search times.

Other systems match on tokens rather than names, then
return the full names containing the matching tokens. A token
may be described as a space-delimited sequence of characters
representing a word in a name. In these other systems,
returned names may be sorted for presentation based on vari-
ous filtering or relevance criteria. The sorting criteria may be
based on factors other than token similarity. For example, in
one system, a search on “Fernando Gomes” with no further
qualifying information returns “Fernando Jose Ferreira
Gomes” and “Fernando Gomes da Gama,” as the top two out
of twenty matching names, ahead of the exact match
“Fernando Gomes,” and then also returns “Paulo Francisco

10

25

30

40

45

50

55

2

Gomes Fernandez” ahead of “Fernando Luciano Gomes de
Mendezes,” even though the latter name is more similar to the

query.
SUMMARY

Provided are a method, computer program product, and
system for comparing names. A first phrase score is obtained
by comparing a name phrase in a first name to a name phrase
in a second name. A second phrase score is obtained by
comparing another name phrase in the first name to another
name phrase in the second name. An overall score is gener-
ated based on the obtained first phrase score and the obtained
second phrase score. The overall score is updated based on
comparing features of the first name with features of the
second name.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates a computing environment in accordance
with certain embodiments.

FIG. 2 illustrates, in a flow diagram, operations for com-
paring two names using features in accordance with certain
embodiments. FIG. 2 is formed by FIG. 2A, FIG. 2B, and
FIG. 2C.

FIG. 3 depicts a cloud computing node in accordance with
certain embodiments.

FIG. 4 depicts a cloud computing environment in accor-
dance with certain embodiments.

FIG. 5 depicts abstraction model layers in accordance with
certain embodiments.

DETAILED DESCRIPTION

The descriptions of the various embodiments ofthe present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

FIG. 1 illustrates a computing environment in accordance
with certain embodiments. A computing device 100 includes
an Unfielded Feature-Based Name Comparison (UFNC)
engine 110. The computing device 100 is coupled to a data
store 150. The data store 150 stores one or more data sets (e.g.,
data set 152), and each data set stores names (e.g., personal
names) with associated features (i.e., characteristics). For
example, dataset 152 stores names with associated features
160. In certain alternative embodiments, the features may be
stored separately from the names and linked to the names. In
certain embodiments, a data set may store names, and the
features may be generated at a later time. The features include
sequential, hierarchical, and semantic features. The features
capture fielding, ordering, and other information that is used
when comparing names. For example, the features may cap-
ture position, gender, field association, number of name
phrases, number of tokens, etc.

The UFNC engine 110 compares a received name (e.g., a
name received in a query) to a comparand name (i.e., a name

US 9,229,926 B2

3

160 stored in the data store 150 to which the received name is
compared). The received name may be referred to as a first
name, and the comparand name may be referred to as a second
name.

The UFNC engine 110 treats a name as a set of sequen-
tially, hierarchically, and semantically related strings in
which the relationships between the members of the set of
strings making up the full name are encoded as features
associated with those strings. Each member string may be
described as a name phrase, and a name phrase may be
described as one or more name stems or roots along with any
associated dependent elements, such as affixes. The UFNC
engine 110 compares each member of the set of strings of a
received name to each member of the set of comparand
strings of a comparand name. The UFNC engine 110 consid-
ers the features assigned to each member during the compari-
son. Incompatible or different features may cause an adjust-
ment of the initial score, with the degree and type of
adjustment depending on the identity and nature of the par-
ticular feature, to generate an updated score. The score may
be described as a string comparison score or a similarity
score.

The UFNC engine 110 avoids the partitioning of names
into different fields for name comparison, so that such parti-
tioning does not prevent the return of relevant matching
names. Concurrently, the UFNC engine 110 allows recog-
nized relationships between parts of a name to be considered
as part of the calculation of similarity between two names.
The distinction between names such as “James Robert” and
“Robert James” may be maintained, without absolutely pre-
venting a match in the case that one of these names represents
a parsing error or discrepancy. Further, information such as
the relative ordering of the parts of the name across the entire
name may be maintained and used in the determination of the
score for the comparison.

Names have syntactic structure, like other parts of lan-
guage. For example, a name may be formed by some combi-
nation of syntactic structural elements such as: a determiner,
apreposition, a stem, a noun phrase, etc., such as illustrated in
the following examples:

la+Cruz

determiner+stem=noun phrase

de+la Cruz

preposition+noun phrase=prepositional phrase=name
phrase

Juan+de la Cruz

name phrase+name phrase

given name+surname=full name

Juan+de la Cruz+Gomez

given name+surname+matronymic=full name

In addition, name permutations are governed by linguistic
and cultural rules, which is illustrated in the following
examples of names in Set A and Set B:

Set A.a Juan de la Cruz Gomez=Juan de la Cruz

Set A.b Juan de la Cruz Gomez=Juan Gomez

Set A.c Juan de la Cruz=Juan Cruz

Set A.d Juan de la Cruz Gomez=Juan Gomez de la Cruz

Set A.e Juan de la Cruz Gomez=Juan Carlos de la Cruz

Set B.a Robert Allen Farnsworth=Robert Farnsworth

Set B.b Robert Allen Farnsworth=Robert Allen

As an example, in Spanish names (see the Set A of names
above), a person typically has two given names, a surname,
and a matronymic (mother’s surname). The name may appear
with one or both given names, the surname, and, optionally,
with the matronymic. The name does not appear with just the
given names and the matronymic. Also, the order of the sur-

10

15

20

25

30

35

40

45

50

55

60

65

4

name and the matronymic indicates which name is which—
surname is on the left, and matronymic is to the right of the
surname.

With reference to the pair of names in Set A.e, the name on
the left of the equal sign consists of GIVEN NAME+SUR-
NAME+MATRONYMIC. The name on the right of the equal
sign consists of GIVEN NAME+GIVEN NAME+SUR-
NAME. While the leftmost element in each is the given name,
the second element in one is a surname and in the other is a
given name, and the third element in one is a matronymic and
in the other a surname. UFNC engine 110 compares element
two in one name to element three in the other name (i.e.,
compares the surname in the name on the left to the surname
in the name on the right. The UFNC engine 110 makes the
determination to compare element two in one name to ele-
ment three in the other name based on the features that each of
the elements has.

With the UFNC engine 110, names are no longer treated as
fielded data, while syntactic information is retained. Thus,
names may be said to be unfielded. The following provides
examples of syntactic information:

Given Name Field [Juan Carlos] Surname Field [dela Cruz
Gomez]
[Juan] [dela Cruz]
[Juan Carlos] [dela Cruz]
[Juan] [Gomez |
[Juan Carlos] [Gomez]

The following provides examples of full names:

Name Juan Carlos de la Cruz Gomez]
Juan de la Cruz]

Juan Carlos Gomez |

Juan Carlos de la Cruz |

Juan de la Cruz Gomez]

Juan Gomez |

[
[
[
[
[
[

The following examples of Set C provide sample positions
in a name:

First position Middle position Middle position Last posi-
tion

Set C.1 Juan de la Cruz
Set C.2 Juan Gomez de la Cruz
Set C.3 Juan Carlos de la Cruz

In the above names, the name Set C.1 is equivalent to the
name Set C.3, but name Set C.1 is not equivalent to name Set
C.2 (i.e., name 1=name 3, but name 1=name 2). In particular,
in Set C1, the person’s given name is ‘Juan’ and his family
name is ‘de la Cruz’. In Set C2, the person’s given name is
‘Juan’ and his family name is ‘Gomez’; the ‘de la Cruz’ in C2
is Juan’s mother’s family name. Note that in Spanish names,
there are generally two surnames in a name: the leftmost of
those two surnames is the individual’s own family name, and
the rightmost surname is his or her mother’s family name. In
other words, Spanish names use both the family name they
inherit from their father, and the surname their mother uses.
However, if the individual is going to write down just his own
surname, he uses his father’s family name, not his mother’s
family name. In Set C3, the person’s full given name is ‘Juan
Carlos’ and his family name is ‘de la Cruz’. Since Set C1 and
Set C3 share the same family name, and both of these names
also have the same first name ‘Juan,” these two names may be

US 9,229,926 B2

5

determined to be interchangeable. However, Set C2 has a
different family name (‘Gomez’) and is therefore a different
name.

The following examples provide sample elements of a
name, including given name, surname, and matronymic:

Given name Given name Surname Matronymic
Juan de la Cruz

Juan Gomez de la Cruz
Juan Carlos de la Cruz

The UFNC engine 110 retains such information for accu-
rate matching, despite the loss of the physical structures that
had been created by fields. Assigning features allows both the
flexibility of unfielded matching and the accuracy of fielded
matching.

FIG. 2 illustrates, in a flow diagram, operations for com-
paring two names using features in accordance with certain
embodiments. FIG. 2 is formed by FIG. 2A, FIG. 2B, and
FIG. 2C. Control begins at block 200 with the UFNC engine
110 receiving a name to be compared to the stored names 160.

In block 202, the UFNC engine 110 parses the received
name into one or more name phrases making up the name. A
name phrase may be described as a set of one or more tokens,
related by dependencies, and that can function as an indepen-
dent unit. A name phrase may consist of a single independent
name stem (e.g., Smith), a name stem, and any tokens with
which the name phrase has dependency relationships, such as
prefixes or suffixes (e.g., van der Meer), or the name phrase
may consist of a set of independent name stems that together
from a compound stem (e.g. Jose-Maria; Varga y Diaz).

In block 204, the UFNC engine 110 identifies features
marking sequence, hierarchical relationships, and semantic
relationships for the received name. With embodiments, fea-
tures marking sequence, hierarchical relationships, and
semantic relationships are identified (e.g., determined and
stored) for a received name and a comparand name before the
UFNC engine 110 performs comparisons of the received
name and the comparand name.

A sequential feature indicates the order in which each word
orname phrase in the name appears relative to the other words
and name phrases in the name. A hierarchical feature recog-
nizes dependency relationships between multiple words that
form a single name phrase or between groups of name phrases
that form a higher-level structure (such as a given name or a
full name). A semantic feature indicates the function the word
or name phrase performs within the context of the full name.
Semantic features may include information about cultural or
linguistic derivation or association. Semantic features may
also be assigned at the level of higher structures, such as full
name. Features may be assigned manually (e.g., by a user or
system administrator) or by an automated technique.

In certain embodiments, sequential features may be
expressed as ordinals, numbers, directional words (e.g., left,
leftmost, etc.), or with any other terminology or symbols or
data structures to express sequential relationships. In certain
embodiments, hierarchical features may use syntactic termi-
nology, numbers, or any other words or symbols or data
structures to express dependency relationships. In certain
embodiments, semantic features may be expressed as labels
for fields, as culture-specific labels for the functional parts of
a name (e.g. nasab, matronymic), or with any terminology or
symbols or data structures to express functional relationships
between the words and name phrases in a name. In certain

10

20

35

40

55

6

embodiments, higher-level semantic features may be
assigned to part or all of the name to account for consider-
ations, such as gender.

In block 206, the UFNC engine 110 selects a next com-
parand name to which the received name is to be compared,
starting with a first comparand name. In block 208, the UFNC
engine 110, ifneeded, parses the comparand name into one or
more name phrases making up the name. In certain embodi-
ments, the parsing of the comparand name is performed
before the processing of FIG. 2 occurs (e.g., when the com-
parand name is stored in data store 150), and the name phrases
are stored and associated with the name in the data store 150.
In certain alternative embodiments, the parsing of the com-
parand name occurs in real-time in block 208. From block
208 (FIG. 2A), processing continues to block 210 (FIG. 2B).

In block 210, the UFNC engine 110, if needed, identifies
features marking sequence, hierarchical relationships, and
semantic relationships for the comparand name.

In block 212, the UFNC engine 110 compares each name
phrase in the received name to each name phrase in the
comparand name to obtain a phrase score for each pair of
name phrases. In various embodiments, the comparison may
be done by one or more string comparison techniques and
may use dependency features within the name phrases to
distinguish which tokens in one name phrase are compared to
which tokens in the other name phrase and what adjustments
may be applied for incompatible or missing dependency fea-
tures. For example, take the name “Maria del Carmen.” This
is a compound name made up of two name phrases. The name
phrase “del Carmen” consists of a stem and a prefix. The
name is a female name. A particular instantiation might
assign sequential, hierarchical [i.e., “del” is a dependency of
“Carmen”], and semantic (e.g., assigning gender to this part
of'the name) features. As another example, a different instan-
tiation might assign gender at the level of the full name, rather
than the name phrase, so that gender wouldn’t be one of the
features to be compared during the initial name phrase-level
comparisons.

With reference to incompatible or missing dependency
features, take a comparison between “Carmen Maria” and
“Maria del Carmen.” The absence of the prefix “del” in the
first name is a significant differentiation. Some adjustment to
the phrase score may be applied for this lack of feature cor-
respondence between “Carmen” and “del Carmen,” even
though both the name phrases share the same stem “Carmen.”

In block 214, the UFNC engine 110 selects name phrases
with the highest phrase scores. In block 216, the UFNC
engine 110 generates an adjusted score for one or more of the
selected pairs of the name phrases based on the phrase scores
of'the one or more selected pairs of name phrases and based
on one or more features. From block 216 (FIG. 2B), process-
ing continues to block 218 (FIG. 2C).

In particular, the UFNC engine 110 may adjust a phrase
score based on comparing features of the received name with
features of the comparand name. For example, some phrase
scores may be adjusted at the level of the name phrase com-
parisons. For example, the UFNC engine 110 may adjust the
phase score (i.e., a name phrase-level score) for a comparison
between “Carmen” and “del Carmen,” reducing the score for
the lack of a corresponding prefix feature. On the other hand,
an adjustment for the ordering difference in “Carmen Maria”
and “Maria del Carmen” may be made as an adjustment to
summed phrase scores. The goal here is to first determine
which name phrases from Name-1 correspond in terms of
string similarity to name phrases from Name-2 (i.e. “Maria-
17 and “Maria-2" are most similar, and “Carmen-1" and “del
Carmen-2” are most similar). Then, the UFNC engine 110

US 9,229,926 B2

7

considers any other features of the two names being com-
pared and further adjusts the phrase score as needed. Some
feature considerations may take place even at the level of
name phrase comparison, such as for “Carmen” versus “del
Carmen”.

In block 218, the UFNC engine 110 generates an overall
score based on the phrase scores (which include any adjusted
phrase scores) for the selected pairs of name phrases. The
overall score is associated with the received name and the
selected comparand name (selected in block 206).

In block 220, the UFNC engine 110 updates the overall
score based on feature comparisons of the received name and
the comparand name. The UFNC engine 110 makes adjust-
ments to initial scores (i.e., the string comparison scores) first
to name phrases, based on feature comparisons, and then to
higher-level structures, including those assigned to the full
name to obtain updated scores. That is, features may pertain
notjust to name phrases, but to larger name structures as well.
For example, a gender feature may be assigned at the level of
the name phrase, at the full set of name phrases that make up
the given name, or at the full name. In particular, in “Anna
Maria Smith”, the features may be applied as: (1) [anna]
female [marialfemale [smith], (2) [[anna] [maria]]female
[smith] or (3) [[[anna] [maria]] [[smith]][female.

In block 222, the UFNC engine 110 determines whether
another comparand is to be selected. If so, processing contin-
ues to block 206 (FIG. 2A), otherwise, processing continues
to block 224. In certain embodiments, all names in the data
store are selected as comparands. In certain alternative
embodiments, a user (e.g., a system administrator) may select
a subset of names to be selected as comparands (e.g., based on
culture, language, profession, etc.). In block 224, the UFNC
engine 110 creates a list of potential matched comparands
(e.g., names from the stored names 160) that is ordered and
scored by how well the comparands match the received name
(i.e., ordered by the updated, overall scores) based on the
updated, overall score for each pair of received and com-
parand names.

In the following illustrative examples, names are assigned
features for field (given name (GN) or surname (SN)), cul-
tural association (represented in these examples as a digit, as
in 1=English, 2=Arabic, etc.), position within the sequence of
name phrases assigned the feature GN or the feature SN (e.g.,
first GN, second GN, represented here as a digit 1, 2, etc.),
position within the overall sequence of name phrases (e.g.,
first, second; represented here as a digit 1, 2, 3, etc.), whether
the GN and SN field feature assignments made as a result of
a parse are the only field assignments allowed by the parse
(feature indicated by O) or whether they are secondary
assignments (indicated by A) because of other allowable
parses, and gender (indicated by F, M, or FM). This particular
representation of features is for illustrative purposes only and
is not intended to define what features may be assigned or the
mechanism by which such features may be associated with a
name or parts of a name.

(PHRASE[Field (GN or SN),Culture(1=English 2=Arabic),Position in
field,Position in name])[Parse(O or A),Gender(M or F)]
Set D.1 (ANN[GN,1,1,1] MARIE[GN,1,2,2]
JONES[SN,1,1,3]
SMITH[SN,1,2,4])[O,F]
Set D.2 (((ANNA[GN,1,1,1] LEE[GN,1,2,2]
SMITH[SN,1,1,3)
[A]((ANNA[GN1,1,1] LEE[SN,1,1,2] SMITH[SN,1,2,3]) [O]) F)
Set D.3 ((((SHELBY[GN,1,1,1] LYNN[SN,1,1,2])
[OD((SHELBY[SN,1,1,2] LYNN[GN,1,1,1])[A])),[FM])
Set D.4 ((TAFAR[GN,2,1,1] TARIQ[GN,2,2,2]

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

MUHAMMADI[SN,2,1,3])[O,M])
Set D.5 ((TARIQ[GN,2,1,1] JAFAR[GN,2,2,2]
MUHAMMADI[SN,2,1,3])[O,M])

The names in Set D.4 and Set D.5 might compare as fol-
lows:

JAFAR«> TARIQ=very low string score

JAFAR MUHAMMADI=no string similarity

TARIQ¢> MUHAMMADI=no string similarity

JAFAR«> JAFAR=strings are identical so assign highest
score, position in field feature is different [1<> 2] so adjust
score

TARIQ«> TARIQ=strings are identical so assign highest
score, position in field feature is different [1¢<> 2] so adjust
score

MUHAMMADI+> MUHAMMADI=strings are identical
so assign highest score, all features the same, so no score
adjustment

JAFAR TARIQ MUHAMMADI«> TARIQ JAFAR
MUHAMMADI=name-level features the same, so no further
feature-based score adjustment

Although each name phrase in Set D.4 is paired with an
identical name phrase in Set D.5 and, thus, would have a
perfect string match score, the features associated with two of
the pairs are different. The scores for these name phrases are,
therefore, adjusted to reflect the dissimilarities in the features
and, thus, the dissimilarities in the names. Hence, if a query
were JAFAR TARIQ MOHAMED, the string JAFAR TARIQ
MUHAMMADI would be scored as a better match than
would TARIQ JAFAR MUHAMMADI, since the positional
feature mismatch penalties in the latter case would lower the
comparison score.

The following is an example list of name formats found in
modern data collections.

GARCIA RUIZ JOSE LUIS

JOSE LUIS GARCIA RUIZ

GARCIA NUNEZ JOSE

JOSE GARCIA NUNEZ

DIAZ JOSE MANUEL GARCIA BELTRANY

JOSE MANUEL GARCIA BELTRANY DIAZ

GARCIA JOSE MANUEL BELTRAN

The following is an example of the above names being
encoded with features:

Set E.a JOSE GARCIA

JOSE features{ givenName, gnAnchor, namePosition1 }
GARCIA features{ surname, snAnchor, namePosition2 }

Set E.b GARCIA JOSE MANUEL BELTRAN

GARCIA features{ surname, snNonAnchor, namePosition1 }
JOSE features{ givenName, gnAnchor, namePosition2 }
MANUEL features{ givenName, gnNonAnchor, namePosition3 }
BELTRAN features{ surname, snAnchor, namePosition4 }
Set E.c GARCIA NUNEZ JOSE

GARCIA features{ surname, snAnchor, namePositionl }
NUNEZ features{ surname, snNonAnchor, namePosition2 }
JOSE features{ givenName, gnAnchor, namePosition3 }

Each of the encoded names has been broken into name
phrases, and each name phrase has been marked with a set of
features that express information about the role of that name
phrase within the full name. Notice that in names in Set E.a
and Set E.c, both instances of the name phrase JOSE share
two out of three of the assigned features, and both instances of
GARCIA likewise share two out of three features. Notice as
well that in name Set E.b, the name phrase GARCIA differs
from the corresponding name phrases in Set E.a and SetE.cin

US 9,229,926 B2

9
that it is marked as snNonAnchor, while Set E.a and Set E.c
are both marked as snAnchor. This feature mismatch repre-
sents a strong difference between name Set E.a and name Set
E.b, specifically that GARCIA is the family name of the
person referred to by name Set E.a, while it is not the family
name of the person referred to in name Set E.b. In other words,
these two names are not likely to refer to the same person. The
value of this feature mismatch is factored into the overall
score for the comparison between Set E.a and Set E.b and is
used to prevent or deprecate a match between these two
names. Thus, names Set E.a and Set E.c will receive high
similarity scores, despite the difference in the order of the
name phrases, while Set E.b will be disallowed as a match for
SetE.a.
The following are example names in Set F:

Set F.a JO ALEXANDER
JO features{ surname, snAnchor, namePositionl } features{
givenName,

gnAnchor, namePositionl }
ALEXANDER features{ givenName, gnAnchor, namePosition2 }
features{

surname, snAnchor, namePosition2 }
Set F.b JOSEPHINE ALEXANDER
JOSEPHINE features{ givenName, gnAnchor, namePositionl }
ALEXANDER features{ surname, snAnchor, namePosition2 }

With reference to the Set F names, two comparisons of
name phrases take place, since JO<-->JOSEPHINE and
ALEXANDER<-->ALEXANDER, each meet match condi-
tions and trigger an exit from the process of string compari-
son. The double headed arrow (“<-->") indicates that two
name phrases pair up with each other. As another example, if
the input orders were ALEXANDER JO and JOSEPHINE
ALEXANDER, the maximum number of comparisons would
be three. That is, JO<-->JOSEPHINE and ALEXANDER<--
>ALEXANDER each share a matching feature set, so these
names may be considered to match. A score adjustment may
optionally be made in consideration of there being two dif-
ferent feature sets associated with the name phrases in name
Set F.a; that is, the existence of a second and different feature
set may be read as introducing uncertainty about the correct
interpretation of the name, this uncertainty being captured in
a reduced score for the comparison.

Thus, the UFNC engine 110 (1) reduces false negatives in
search results by eliminating name fields as barriers to com-
parison; (2) reduces false positives by requiring comparison
of'all name phrases in the full query name to all name phrases
in the full comparand; (3) increases ease in identifying the
most relevant comparands by allowing for scores that take
into account differentiating features based on the full names
being compared, which can then be used for ranking search
returns; (4) increases performance times by eliminating
unnecessary additional searches on alternate parsed forms of
the names being compared.

The UFNC engine 110 uses the semantic and hierarchical
structure defined by the parse language, and then uses that
structure to weight parse term similarities to give better match
scores.

The UFNC engine 110 determines similarity between
unparsed names. Each of the names has a set of sequentially,
hierarchically, and semantically related strings, termed name
phrases. The relationships between the members of the set of
strings making up the full name within the language are
defined as features associated with those strings. Two names
are compared by: comparing each name phrase in the
received name to each name phrase in the comparand; using

10

15

20

25

30

35

40

45

50

55

60

65

10

string comparison techniques to score the similarity of each
name phrase; creating pairs of strings that have the highest
comparison scores; creating an overall score based on a sum-
mation of the pair comparison scores; updating the overall
score using the feature information on name phrases, to give
higher scores when the features match. In particular, the over-
all score is increased when sequential, hierarchical, and/or
semantic features match. The UFNC engine 110 also creates
a list of potential matches from a set of known names that is
ordered and scored by how well they match the received
name.

The UFNC engine 110 differentiates degrees of similarity
in names that are compared without being parsed into sepa-
rate fields.

Cloud Computing

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-

US 9,229,926 B2

11

ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 3, a schematic of an example of a
cloud computing node is shown. Cloud computing node 310
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of use
or functionality of embodiments of the invention described
herein. Regardless, cloud computing node 310 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 310 there is a computer system/
server 312, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 312 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

12

Computer system/server 312 may be described in the gen-
eral context of computer system executable instructions, such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system/server 312 may be practiced in dis-
tributed cloud computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

As shown in FIG. 3, computer system/server 312 in cloud
computing node 310 is shown in the form of a general-pur-
pose computing device. The components of computer sys-
tem/server 312 may include, but are not limited to, one or
more processors or processing units 316, a system memory
328, and a bus 318 that couples various system components
including system memory 328 to processor 316.

Bus 318 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 312 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
312, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 328 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 330 and/or cache memory 332. Com-
puter system/server 312 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 334 can
be provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 318 by one or more data media interfaces. As will be
further depicted and described below, memory 328 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

Program/utility 340, having a set (at least one) of program
modules 342, may be stored in memory 328 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 342
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 312 may also communicate with
one or more external devices 314 such as a keyboard, a
pointing device, a display 324, etc.; one or more devices that
enable a user to interact with computer system/server 312;

US 9,229,926 B2

13

and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 312 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0) interfaces 322. Still yet, com-
puter system/server 312 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the Inter-
net) via network adapter 320. As depicted, network adapter
320 communicates with the other components of computer
system/server 312 via bus 318. It should be understood that
although not shown, other hardware and/or software compo-
nents could be used in conjunction with computer system/
server 312. Examples, include, but are not limited to: micro-
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data archi-
val storage systems, etc.

Referring now to FIG. 4, illustrative cloud computing envi-
ronment 450 is depicted. As shown, cloud computing envi-
ronment 450 comprises one or more cloud computing nodes
310 with which local computing devices used by cloud con-
sumers, such as, for example, personal digital assistant (PDA)
or cellular telephone 454A, desktop computer 454B, laptop
computer 454C, and/or automobile computer system 454N
may communicate. Nodes 310 may communicate with one
another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Commu-
nity, Public, or Hybrid clouds as described hereinabove, or a
combination thereof. This allows cloud computing environ-
ment 450 to offer infrastructure, platforms and/or software as
services for which a cloud consumer does not need to main-
tain resources on a local computing device. It is understood
that the types of computing devices 454A-N shown in FIG. 4
are intended to be illustrative only and that computing nodes
310 and cloud computing environment 450 can communicate
with any type of computerized device over any type of net-
work and/or network addressable connection (e.g., using a
web browser).

Referring now to FIG. 5, a set of functional abstraction
layers provided by cloud computing environment 450 (FIG.
4) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 5§ are
intended to be illustrative only and embodiments of the inven-
tion are not limited thereto. As depicted, the following layers
and corresponding functions are provided:

Hardware and software layer 560 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 562 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 564 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud

10

15

20

25

30

35

40

45

50

55

60

65

14

computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 566 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and UFNC processing.

Thus, in certain embodiments, software or a program,
implementing UFNC processing in accordance with embodi-
ments described herein, is provided as a service in a cloud
environment.

In certain embodiments, the computing device 100 has the
architecture of computing node 310. In certain embodiments,
the computing device 100 is part of a cloud environment. In
certain alternative embodiments, the computing device 100 is
not part of a cloud environment.

ADDITIONAL EMBODIMENT DETAILS

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, solid state memory, magnetic tape or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

US 9,229,926 B2

15

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the embodiments of the invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational pro-
cessing (e.g., operations or steps) to be performed on the
computer, other programmable apparatus or other devices to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.

The code implementing the described operations may fur-
ther be implemented in hardware logic or circuitry (e.g., an

10

15

20

25

30

35

40

45

50

55

60

65

16

integrated circuit chip, Programmable Gate Array (PGA),
Application Specific Integrated Circuit (ASIC), etc. The
hardware logic may be coupled to a processor to perform
operations.

Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly or
indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all such
components are required. On the contrary a variety of
optional components are described to illustrate the wide vari-
ety of possible embodiments of the present invention.

Further, although process steps, method steps, algorithms
or the like may be described in a sequential order, such pro-
cesses, methods and algorithms may be configured to work in
alternate orders. In other words, any sequence or order of
steps that may be described does not necessarily indicate a
requirement that the steps be performed in that order. The
steps of processes described herein may be performed in any
order practical. Further, some steps may be performed simul-
taneously.

When a single device or article is described herein, it will
bereadily apparent that more than one device/article (whether
or not they cooperate) may be used in place of a single
device/article. Similarly, where more than one device or
article is described herein (whether or not they cooperate), it
will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embodied
by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device itself.

The illustrated operations of the flow diagrams show cer-
tain events occurring in a certain order. In alternative embodi-
ments, certain operations may be performed in a different
order, modified or removed. Moreover, operations may be
added to the above described logic and still conform to the
described embodiments. Further, operations described herein
may occur sequentially or certain operations may be pro-
cessed in parallel. Yet further, operations may be performed
by a single processing unit or by distributed processing units.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, “some embodiments”, and ‘“one
embodiment” mean “one or more (but not all) embodiments
of the present invention(s)” unless expressly specified other-
wise.

The terms “including”, “comprising”, “having” and varia-
tions thereof mean “including but not limited to”, unless
expressly specified otherwise.

US 9,229,926 B2

17

The enumerated listing of items does not imply that any or
all of the items are mutually exclusive, unless expressly speci-
fied otherwise.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
embodiments of the present invention has been presented for
purposes of illustration and description, but is not intended to
be exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The foregoing description of embodiments of the invention
has been presented for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the
embodiments to the precise form disclosed. Many modifica-
tions and variations are possible in light of the above teaching.
Itis intended that the scope of the embodiments be limited not
by this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a
complete description of the manufacture and use of the com-
position of the embodiments. Since many embodiments may
be made without departing from the spirit and scope of the
invention, the embodiments reside in the claims hereinafter
appended or any subsequently-filed claims, and their equiva-
lents.

The invention claimed is:

1. A computer program product for comparing names, the
computer program product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, wherein the
non-transitory computer readable program code, when
executed by at least one processor of a computer, is
configured to perform:

receiving, into the computer, a first name for comparison;

for each pair of names including the first name and a second
name selected from a set of names:
identifying features of the first name that comprise

semantic relationships that include information about
cultural derivation, hierarchical relationships that

10

15

20

25

30

35

40

45

50

55

60

65

18

describe dependency relationships between multiple
words that form a first name phrase within the first
name, position information for each of the words in
the first name phrase, and position information for
name phrases in the first name;

identifying features of the second name that comprise
semantic relationships that include information about
cultural derivation, hierarchical relationships that
describe dependency relationships between multiple
words that form a second name phrase within the
second name, position information for each of the
words in the second name phrase, and position infor-
mation for name phrases in the second name;

obtaining a first phrase score by comparing the first
name phrase in the first name to the second name
phrase in the second name;

obtaining a second phrase score by comparing another
name phrase in the first name to another name phrase
in the second name;

generating an overall score for the pair of names based
on the obtained first phrase score and the obtained
second phrase score; and

updating the overall score for the pair of names based on
comparing the features of the first name with the
features of the second name; and

providing, with the computer, a list of the second names

from the set of second names that matched the first name
in order of the updated score for each pair of names.

2. The computer program product of claim 1, wherein the
computer readable program code, when executed by the at
least one processor of the computer, is configured to perform:

obtaining additional phrase scores; and

selecting highest phrase scores from among the first phrase

score, the second phrase score, and the additional phrase
scores for generating the overall score.

3. The computer program product of claim 1, wherein the
computer readable program code, when executed by the at
least one processor of the computer, is configured to perform:

adjusting the first phrase score for at least one of an incom-

patible feature and a missing dependency feature.

4. The computer program product of claim 1, wherein the
computer readable program code, when executed by the at
least one processor of the computer, is configured to perform:

adjusting the first phrase score based on comparing the

features of the first name with the features of the second
name.

5. The computer program product of claim 1, wherein a
Software as a Service (SaaS) is configured to perform the
computer program product operations.

6. A computer system for comparing names, comprising:

at least one processor; and

a storage device connected to the at least one processor,

wherein the storage device has stored thereon a program,
and wherein the at least one processor is configured to
execute instructions of the program to perform opera-
tions, wherein the operations comprise:

receiving, into the computer system, a first name for com-

parison;

for each pair of names including the first name and a second

name selected from a set of names:

identifying features of the first name that comprise
semantic relationships that include information about
cultural derivation, hierarchical relationships that
describe dependency relationships between multiple
words that form a first name phrase within the first
name, position information for each of the words in

US 9,229,926 B2

19

the first name phrase, and position information for
name phrases in the first name;

identifying features of the second name that comprise
semantic relationships that include information about
cultural derivation, hierarchical relationships that
describe dependency relationships between multiple
words that form a second name phrase within the
second name, position information for each of the
words in the second name phrase, and position infor-
mation for name phrases in the second name;

obtaining a first phrase score by comparing the first
name phrase in the first name to the second name
phrase in the second name;

obtaining a second phrase score by comparing another
name phrase in the first name to another name phrase
in the second name;

generating an overall score for the pair of names based
on the obtained first phrase score and the obtained
second phrase score; and

updating the overall score for the pair of names based on
comparing the features of the first name with the
features of the second name; and

10

15

20

20

providing, with the computer system, a list of the second
names from the set of second names that matched the
first name in order of the updated score for each pair of
names.
7. The computer system of claim 6, further comprising:
obtaining additional phrase scores; and
selecting highest phrase scores from among the first phrase
score, the second phrase score, and the additional phrase
scores for generating the overall score.
8. The computer system of claim 6, further comprising:
adjusting the first phrase score for at least one of an incom-
patible feature and a missing dependency feature.
9. The computer system of claim 6, further comprising:
adjusting the first phrase score based on comparing the
features of the first name with the features of the second
name.
10. The computer system of claim 6, wherein a Software as
a Service (SaaS) is provided to perform the system opera-
tions.

